博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
深度有趣 | 27 服饰关键点定位
阅读量:5877 次
发布时间:2019-06-19

本文共 15810 字,大约阅读时间需要 52 分钟。

简介

介绍如何使用CPM(Convolutional Pose Machines)实现服饰关键点定位

原理

关键点定位是一类常见而有用的任务,某种意义上可以理解为一种特征工程

  • 人脸关键点定位,可用于人脸识别、表情识别
  • 人体骨骼关键点定位,可用于姿态估计
  • 手部关键点定位,可用于手势识别

输入是一张图片,输出是每个关键点的x、y坐标,一般会归一化到0~1区间中,所以可以理解为回归问题

但是直接对坐标值进行回归会导致较大误差,更好的做法是输出一个低分辨率的热图,使得关键点所在位置输出较高响应,而其他位置则输出较低响应

CPM(Convolutional Pose Machines)的基本思想是使用多个级联的stage,每个stage包含多个CNN并且都输出热图

通过最小化每个stage的热图和ground truth之间的差距,从而得到越来越准确的关键点定位结果

数据

使用天池FashionAI全球挑战赛提供的数据,

其中服饰关键点定位赛题提供的训练集包括4W多张图片,测试集包括将近1W张图片

每张图片都指定了对应的服饰类别,共5类:上衣(blouse)、外套(outwear)、连身裙(dress)、半身裙(skirt)、裤子(trousers)

训练集还提供了每张图片对应的24个关键点的标注,包括x坐标、y坐标、是否可见三项信息,但并不是每类服饰都有24个关键点

关于以上数据的更多介绍可以参考以下文章,

为了简化问题,以下仅使用dress类别的训练集数据训练CPM模型

实现

加载库

# -*- coding: utf-8 -*-import tensorflow as tfimport numpy as npimport pandas as pdfrom sklearn.utils import shufflefrom sklearn.model_selection import train_test_splitimport cv2import matplotlib.pyplot as plt%matplotlib inlinefrom imageio import imread, imsaveimport osimport globfrom tqdm import tqdmimport warningswarnings.filterwarnings('ignore')复制代码

加载训练集和测试集

train = pd.read_csv(os.path.join('data', 'train', 'train.csv'))train_warm = pd.read_csv(os.path.join('data', 'train_warm', 'train_warm.csv'))test = pd.read_csv(os.path.join('data', 'test', 'test.csv'))print(len(train), len(train_warm), len(test))columns = train.columnsprint(len(columns), columns)train['image_id'] = train['image_id'].apply(lambda x:os.path.join('train', x))train_warm['image_id'] = train_warm['image_id'].apply(lambda x:os.path.join('train_warm', x))train = pd.concat([train, train_warm])del train_warmtrain.head()复制代码

仅保留dress类别的数据

train = train[train.image_category == 'dress']test = test[test.image_category == 'dress']print(len(train), len(test))复制代码

拆分标注信息中的x坐标、y坐标、是否可见

for col in columns:    if col in ['image_id', 'image_category']:        continue    train[col + '_x'] = train[col].apply(lambda x:float(x.split('_')[0]))    train[col + '_y'] = train[col].apply(lambda x:float(x.split('_')[1]))    train[col + '_s'] = train[col].apply(lambda x:float(x.split('_')[2]))    train.drop([col], axis=1, inplace=True)train.head()复制代码

将x坐标和y坐标进行归一化

features = [    'neckline_left', 'neckline_right', 'center_front', 'shoulder_left', 'shoulder_right',     'armpit_left', 'armpit_right', 'waistline_left', 'waistline_right',     'cuff_left_in', 'cuff_left_out', 'cuff_right_in', 'cuff_right_out', 'hemline_left', 'hemline_right']train = train.to_dict('records')for i in tqdm(range(len(train))):    record = train[i]    img = imread(os.path.join('data', record['image_id']))    h = img.shape[0]    w = img.shape[1]    for col in features:        if record[col + '_s'] >= 0:            train[i][col + '_x'] /= w            train[i][col + '_y'] /= h        else:            train[i][col + '_x'] = 0            train[i][col + '_y'] = 0复制代码

随机选一些训练数据并绘图查看

img_size = 256r = 10c = 10puzzle = np.ones((img_size * r, img_size * c, 3))random_indexs = np.random.choice(len(train), 100)for i in range(100):    record = train[random_indexs[i]]    img = imread(os.path.join('data', record['image_id']))    img = cv2.resize(img, (img_size, img_size))    for col in features:        if record[col + '_s'] >= 0:            cv2.circle(img, (int(img_size * record[col + '_x']), int(img_size * record[col + '_y'])), 3, (120, 240, 120), 2)    img = img / 255.    r = i // 10    c = i % 10    puzzle[r * img_size: (r + 1) * img_size, c * img_size: (c + 1) * img_size, :] = imgplt.figure(figsize=(15, 15))plt.imshow(puzzle)plt.show()复制代码

整理数据并分割训练集和验证集

X_train = []Y_train = []for i in tqdm(range(len(train))):    record = train[i]    img = imread(os.path.join('data', record['image_id']))    img = cv2.resize(img, (img_size, img_size))        y = []    for col in features:        y.append([record[col + '_x'], record[col + '_y']])    X_train.append(img)    Y_train.append(y)X_train = np.array(X_train)Y_train = np.array(Y_train)print(X_train.shape)print(Y_train.shape)X_train, X_valid, Y_train, Y_valid = train_test_split(X_train, Y_train, test_size=0.1)print(X_train.shape, Y_train.shape)print(X_valid.shape, Y_valid.shape)复制代码

定义一些参数和模型输入

batch_size = 16heatmap_size = 32stages = 6y_dim = Y_train.shape[1]X = tf.placeholder(tf.float32, [None, img_size, img_size, 3], name='X')Y = tf.placeholder(tf.float32, [None, heatmap_size, heatmap_size, y_dim + 1], name='Y')def conv2d(inputs, filters, kernel_size, padding='same', activation=tf.nn.relu, name=''):    if name:        return tf.layers.conv2d(inputs, filters=filters, kernel_size=kernel_size, strides=1, padding=padding,                                 activation=activation, name=name, kernel_initializer=tf.contrib.layers.xavier_initializer())    else:        return tf.layers.conv2d(inputs, filters=filters, kernel_size=kernel_size, strides=1, padding=padding,                                 activation=activation, kernel_initializer=tf.contrib.layers.xavier_initializer())def maxpool2d(inputs):    return tf.layers.max_pooling2d(inputs, pool_size=2, strides=2, padding='valid')复制代码

定义CPM模型,使用6个stage

stage_heatmaps = []# sub_stageh0 = maxpool2d(conv2d(conv2d(X, 64, 3), 64, 3))h0 = maxpool2d(conv2d(conv2d(h0, 128, 3), 128, 3))h0 = maxpool2d(conv2d(conv2d(conv2d(conv2d(h0, 256, 3), 256, 3), 256, 3), 256, 3))for i in range(6):    h0 = conv2d(h0, 512, 3)sub_stage = conv2d(h0, 128, 3) # batch_size, 32, 32, 128# stage_1h0 = conv2d(sub_stage, 512, 1, padding='valid')h0 = conv2d(h0, y_dim + 1, 1, padding='valid', activation=None, name='stage_1')stage_heatmaps.append(h0)# other stagesfor stage in range(2, stages + 1):    h0 = tf.concat([stage_heatmaps[-1], sub_stage], axis=3)    for i in range(5):        h0 = conv2d(h0, 128, 7)    h0 = conv2d(h0, 128, 1, padding='valid')    h0 = conv2d(h0, y_dim + 1, 1, padding='valid', activation=None, name='stage_%d' % stage)    stage_heatmaps.append(h0)复制代码

定义损失函数和优化器

global_step = tf.Variable(0, trainable=False)learning_rate = tf.train.exponential_decay(0.001, global_step=global_step, decay_steps=1000, decay_rate=0.9)losses = [0 for _ in range(stages)]total_loss = 0for stage in range(stages):    losses[stage] = tf.losses.mean_squared_error(Y, stage_heatmaps[stage])    total_loss += losses[stage]total_loss_with_reg = total_loss + tf.contrib.layers.apply_regularization(tf.contrib.layers.l2_regularizer(1e-10), tf.trainable_variables())total_loss = total_loss / stagestotal_loss_with_reg = total_loss_with_reg / stagesoptimizer = tf.contrib.layers.optimize_loss(total_loss_with_reg, global_step=global_step, learning_rate=learning_rate,                                             optimizer='Adam', increment_global_step=True)复制代码

由于训练数据较少,因此定义一个数据增强的函数

def transform(X_batch, Y_batch):    X_data = []    Y_data = []        offset = 20    for i in range(X_batch.shape[0]):        img = X_batch[i]        # random rotation        degree = int(np.random.random() * offset - offset / 2)        rad = degree / 180 * np.pi        mat = cv2.getRotationMatrix2D((img_size / 2, img_size / 2), degree, 1)        img_ = cv2.warpAffine(img, mat, (img_size, img_size), borderValue=(255, 255, 255))        # random translation        x0 = int(np.random.random() * offset - offset / 2)        y0 = int(np.random.random() * offset - offset / 2)        mat = np.float32([[1, 0, x0], [0, 1, y0]])        img_ = cv2.warpAffine(img_, mat, (img_size, img_size), borderValue=(255, 255, 255))        # random flip        if np.random.random() > 0.5:            img_ = np.fliplr(img_)            flip = True        else:            flip = False            X_data.append(img_)                points = []        for j in range(y_dim):            x = Y_batch[i, j, 0] * img_size            y = Y_batch[i, j, 1] * img_size            # random rotation            dx = x - img_size / 2              dy = y - img_size / 2            x = int(dx * np.cos(rad) + dy * np.sin(rad) + img_size / 2)              y = int(-dx * np.sin(rad) + dy * np.cos(rad) + img_size / 2)            # random translation            x += x0            y += y0            x = x / img_size            y = y / img_size            points.append([x, y])        # random flip        if flip:            data = {features[j]: points[j] for j in range(y_dim)}            points = []            for j in range(y_dim):                col = features[j]                if col.find('left') >= 0:                    col = col.replace('left', 'right')                elif col.find('right') >= 0:                    col = col.replace('right', 'left')                [x, y] = data[col]                x = 1 - x                points.append([x, y])                    Y_data.append(points)            X_data = np.array(X_data)    Y_data = np.array(Y_data)        # preprocess    X_data = (X_data / 255. - 0.5) * 2    Y_heatmap = []    for i in range(Y_data.shape[0]):        heatmaps = []        invert_heatmap = np.ones((heatmap_size, heatmap_size))        for j in range(Y_data.shape[1]):            x0 = int(Y_data[i, j, 0] * heatmap_size)            y0 = int(Y_data[i, j, 1] * heatmap_size)            x = np.arange(0, heatmap_size, 1, float)            y = x[:, np.newaxis]            cur_heatmap = np.exp(-((x - x0) ** 2 + (y - y0) ** 2) / (2.0 * 1.0 ** 2))            heatmaps.append(cur_heatmap)            invert_heatmap -= cur_heatmap        heatmaps.append(invert_heatmap)        Y_heatmap.append(heatmaps)    Y_heatmap = np.array(Y_heatmap)    Y_heatmap = np.transpose(Y_heatmap, (0, 2, 3, 1)) # batch_size, heatmap_size, heatmap_size, y_dim + 1        return X_data, Y_data, Y_heatmap复制代码

查看数据增强之后的图片和关键点是否正确

X_batch = X_train[:batch_size]Y_batch = Y_train[:batch_size]X_data, Y_data, Y_heatmap = transform(X_batch, Y_batch)n = int(np.sqrt(batch_size))puzzle = np.ones((img_size * n, img_size * n, 3))for i in range(batch_size):    img = (X_data[i] + 1) / 2    for j in range(y_dim):        cv2.circle(img, (int(img_size * Y_data[i, j, 0]), int(img_size * Y_data[i, j, 1])), 3, (120, 240, 120), 2)    r = i // n    c = i % n    puzzle[r * img_size: (r + 1) * img_size, c * img_size: (c + 1) * img_size, :] = imgplt.figure(figsize=(12, 12))plt.imshow(puzzle)plt.show()复制代码

可以看到,在经过随机旋转、随机平移、随机水平翻转之后,图片和关键点依旧一一对应

训练模型,使用early stopping

sess = tf.Session()sess.run(tf.global_variables_initializer())OUTPUT_DIR = 'samples'if not os.path.exists(OUTPUT_DIR):    os.mkdir(OUTPUT_DIR)for stage in range(stages):    tf.summary.scalar('loss/loss_stage_%d' % (stage + 1), losses[stage])tf.summary.scalar('loss/total_loss', total_loss)summary = tf.summary.merge_all()writer = tf.summary.FileWriter(OUTPUT_DIR)loss_valid_min = np.infsaver = tf.train.Saver()epochs = 100patience = 10for e in range(epochs):    loss_train = []    loss_valid = []        X_train, Y_train = shuffle(X_train, Y_train)    for i in tqdm(range(X_train.shape[0] // batch_size)):        X_batch = X_train[i * batch_size: (i + 1) * batch_size, :, :, :]        Y_batch = Y_train[i * batch_size: (i + 1) * batch_size, :, :]        X_data, Y_data, Y_heatmap = transform(X_batch, Y_batch)        _, ls, lr, stage_heatmaps_ = sess.run([optimizer, total_loss, learning_rate, stage_heatmaps],                                                feed_dict={X: X_data, Y: Y_heatmap})        loss_train.append(ls)                if i > 0 and i % 100 == 0:            writer.add_summary(sess.run(summary, feed_dict={X: X_data, Y: Y_heatmap}),                                e * X_train.shape[0] // batch_size + i)            writer.flush()    loss_train = np.mean(loss_train)        demo_img = (X_data[0] + 1) / 2    demo_heatmaps = []    for stage in range(stages):        demo_heatmap = stage_heatmaps_[stage][0, :, :, :y_dim].reshape((heatmap_size, heatmap_size, y_dim))        demo_heatmap = cv2.resize(demo_heatmap, (img_size, img_size))        demo_heatmap = np.amax(demo_heatmap, axis=2)        demo_heatmap = np.reshape(demo_heatmap, (img_size, img_size, 1))        demo_heatmap = np.repeat(demo_heatmap, 3, axis=2)        demo_heatmaps.append(demo_heatmap)    demo_gt_heatmap = Y_heatmap[0, :, :, :y_dim].reshape((heatmap_size, heatmap_size, y_dim))    demo_gt_heatmap = cv2.resize(demo_gt_heatmap, (img_size, img_size))    demo_gt_heatmap = np.amax(demo_gt_heatmap, axis=2)    demo_gt_heatmap = np.reshape(demo_gt_heatmap, (img_size, img_size, 1))    demo_gt_heatmap = np.repeat(demo_gt_heatmap, 3, axis=2)    upper_img = np.concatenate((demo_heatmaps[0], demo_heatmaps[1], demo_heatmaps[2]), axis=1)    blend_img = 0.5 * demo_img + 0.5 * demo_gt_heatmap    lower_img = np.concatenate((demo_heatmaps[-1], demo_gt_heatmap, blend_img), axis=1)    demo_img = np.concatenate((upper_img, lower_img), axis=0)    imsave(os.path.join(OUTPUT_DIR, 'sample_%d.jpg' % e), demo_img)        X_valid, Y_valid = shuffle(X_valid, Y_valid)    for i in range(X_valid.shape[0] // batch_size):        X_batch = X_valid[i * batch_size: (i + 1) * batch_size, :, :, :]        Y_batch = Y_valid[i * batch_size: (i + 1) * batch_size, :, :]        X_data, Y_data, Y_heatmap = transform(X_batch, Y_batch)        ls = sess.run(total_loss, feed_dict={X: X_data, Y: Y_heatmap})        loss_valid.append(ls)    loss_valid = np.mean(loss_valid)        print('Epoch %d, lr %.6f, train loss %.6f, valid loss %.6f' % (e, lr, loss_train, loss_valid))    if loss_valid < loss_valid_min:        print('Saving model...')        saver.save(sess, os.path.join(OUTPUT_DIR, 'cpm'))        loss_valid_min = loss_valid        patience = 10    else:        patience -= 1        if patience == 0:            break复制代码

经过87个epoch之后训练提前停止,训练集损失为0.001228,验证集损失为0.001871,验证集最低损失为0.001821

训练集结果如下,上面三张图依次为stage1、stage2、stage3的结果,下面三张图依次为stage6、ground truth、groud truth和原图

在本机上使用以下代码,对测试集中的图片进行关键点定位

# -*- coding: utf-8 -*-import tensorflow as tfimport numpy as npimport pandas as pdfrom sklearn.utils import shuffleimport cv2import matplotlib.pyplot as pltfrom imageio import imread, imsaveimport ostest = pd.read_csv(os.path.join('data', 'test', 'test.csv'))test['image_id'] = test['image_id'].apply(lambda x:os.path.join('test', x))test = test[test.image_category == 'dress']test = test['image_id'].valuesbatch_size = 16img_size = 256test = shuffle(test)test = test[:batch_size]X_test = []for i in range(batch_size):    img = imread(os.path.join('data', test[i]))    img = cv2.resize(img, (img_size, img_size))    X_test.append(img)X_test = np.array(X_test)print(X_test.shape)sess = tf.Session()sess.run(tf.global_variables_initializer())OUTPUT_DIR = 'samples'saver = tf.train.import_meta_graph(os.path.join(OUTPUT_DIR, 'cpm.meta'))saver.restore(sess, tf.train.latest_checkpoint(OUTPUT_DIR))stages = 6y_dim = 15heatmap_size = 32graph = tf.get_default_graph()X = graph.get_tensor_by_name('X:0')stage_heatmap = graph.get_tensor_by_name('stage_%d/BiasAdd:0' % stages)def visualize_result(imgs, heatmap, joints):    imgs = imgs.astype(np.int32)    coords = []    for i in range(imgs.shape[0]):        hp = heatmap[i, :, :, :joints].reshape((heatmap_size, heatmap_size, joints))        hp = cv2.resize(hp, (img_size, img_size))        coord = np.zeros((joints, 2))        for j in range(joints):            xy = np.unravel_index(np.argmax(hp[:, :, j]), (img_size, img_size))            coord[j, :] = [xy[0], xy[1]]            cv2.circle(imgs[i], (xy[1], xy[0]), 3, (120, 240, 120), 2)        coords.append(coord)        return imgs / 255., coordsheatmap = sess.run(stage_heatmap, feed_dict={X: (X_test / 255. - 0.5) * 2})X_test, coords = visualize_result(X_test, heatmap, y_dim) n = int(np.sqrt(batch_size))puzzle = np.ones((img_size * n, img_size * n, 3))for i in range(batch_size):    img = X_test[i]    r = i // n    c = i % n    puzzle[r * img_size: (r + 1) * img_size, c * img_size: (c + 1) * img_size, :] = imgplt.figure(figsize=(12, 12))plt.imshow(puzzle)plt.show()imsave('服饰关键点定位测试集结果.jpg', puzzle)复制代码

测试集结果如下,对于大多数情况能够得到很准确的关键点定位结果

参考

  • Convolutional Pose Machines:
  • Code repository for Convolutional Pose Machines:
  • 天池FashionAI全球挑战赛小小尝试:

视频讲解课程

转载地址:http://djkix.baihongyu.com/

你可能感兴趣的文章
Android -- AudioPlayer
查看>>
Python大数据依赖包安装
查看>>
Android View.onMeasure方法的理解
查看>>
Node.js 爬虫初探
查看>>
ABP理论学习之仓储
查看>>
NestJS 脑图
查看>>
我的友情链接
查看>>
Html body的滚动条禁止与启用
查看>>
Tengine新增nginx upstream模块的使用
查看>>
多媒体工具Mediainfo
查看>>
1-小程序
查看>>
CentOS图形界面和命令行切换
查看>>
HTML5通信机制与html5地理信息定位(gps)
查看>>
Mind_Manager_2
查看>>
手动升级 Confluence - 规划你的升级
查看>>
汽车常识全面介绍 - 悬挂系统
查看>>
电子政务方向:We7.Cloud政府云门户
查看>>
虚拟机Centos7连接Internet
查看>>
ansible 基本操作(初试)
查看>>
更改tomcat的根目录路径
查看>>